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Extended Hiickel tight binding (EH-TB) calculations are shown to give a satisfactory description of 
alkali crystals. It is found that maximization of the valence p orbital overlap is a significant factor in 
determining the large interatomic separation. o 1986 Academic PXSS, 1~. 

Introduction 

As one progresses along the periodic ta- 
ble from the alkali metals through the tran- 
sition metals it is usually considered that 
the metallic valence electrons are formed 
from a mixing of the s orbital&and with the 
d orbitals/band (for example, the 3d orbitals 
with the 4s ones). Once the s and d levels 
are filled, the p orbitals are assumed to fill, 
causing the large changes observed in phys- 
ical and chemical properties. Chemists, 
however, often consider the importance of 
the valence p orbitals for coordination 
chemistry, even when they are “formally” 
unoccupied. For instance, the number of 
ligands of a metal complex is determined by 
the l&electron rule. (The number 18 comes 
from double occupation of the nine-valence 
orbitals, where the three p orbitals are in- 
cluded along with five d orbitals and the s 
orbital of the metal atom.) 

In this communication, we first show 
results of EH-TB calculations for alkali 
metal crystals. The occupied density of 
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states include extensive p-character. Then, 
we discuss the unusually large interatomic 
spacings of alkali metal crystals. Aided by 
simple symmetry and phase relation argu- 
ments, our calculations demonstrate the 
(usually neglected) importance of p orbit- 
als, and the utility of a “chemist’s interpre- 
tation” of solid state properties. In the third 
part we show how a determination of the 
energy relation (in semiempirical calcula- 
tions) between s and p levels can be aided 
by an examination of the calculated band 
structure diagrams. 

Results and Discussion 

I. Band Structure and Density of States 

In Fig. la and b are presented the band 
structure and the density of states for the 
rubidium bee crystal. These results were 
obtained using an extended Hiickel tight 
binding calculation with the parameters 
given in Table 1. The diagrams compare 
rather well with the calcuiation by Mor- 
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FIG. 1. Band structure (a) and density of states (b) of bee rubidium. Dotted lines correspond to the s 
and p contribution. 

ruzzi et al. (3). The occupied states are 
made of s and p orbitals, with the d orbitals 
contributing mostly to vacant states. The 
orbital population analysis gives more 5~ 
electron density (0.533) than 5s (0.435), 
with the 4d being negligible (0.032). Figures 
2a and b show similar results for the so- 
dium bee crystal. The 3p orbital population 
(0.608) also exceeds the 3s (0.392). 

The p contribution appreciably increases 
the cohesive energies in all alkali crystals. 
Three terms (S-S, s-p, and p-p) are in- 
volved in the bond. In the simple diatomic 
description, s and p orbitals mix, forming 
one (occupied) molecular orbital. In the 
tight binding model of the crystal, the hy- 
bridization varies across the Brillouin zone. 
The lowest band, for instance, is pure s at 
the zone center I and pure p at the zone 
edges N and H. Thus S--S overlap domi- 
nates near the center of the Brillouin zone, 
p-p near the edges, and various s-p hy- 
brids in between. Our results show that de- 
spite the very diffuse character of the va- 
lence shell and the known limitations of 
semiempirical LCAO methods, the EH-TB 
method can give a reasonable approxima- 
tion to bulk alkali metals. at least from the 

TABLE I 

PARAMETERS USEDINTHEEXTENDED H~~CKEI 
TIGHT BINDING CALCULATIONS 

H,, (ev) EXP Distance, A 

Na Core 
2s -76.1 

3 -41.3 
3.286 
3.4 

Na Valence 
3s -8.5 
3P -7.5 

(Set I) 
0.77 
0.77 

3.67 

Na Valence 
3s -8.5 
3P -6.25 

(Set 2) 
0.815 
0.815 

3.64 

Li 
2s 
2P 

-9.0 
-8.0 

0.703 3.03 
0.703 

K 
4s 

4P 
-6.25 0.8 4.53 
-5.0 0.8 

Rb 
5s 

5P 
5d 

-4.0 
-3.4 
-2.9 

0.865 4.84 
0.865 
3.92(0.677) 
0.85(0.677) 



GARFUNKEL AND MINOT GARFUNKEL AND MINOT 

b b 

0.0 0.0 

0.0 0.0 
-14 -14 -12 -12 -10 -10 

N N r r H H Energy bV) Energy bV) 

FIG. 2. Band structure (a) and density of states (b) of bee sodium. FIG. 2. Band structure (a) and density of states (b) of bee sodium. 

point of view of band structure and density 
of states. 

2. Atomic Distances 

The extended Hiickel method is inade- 
quate at representing bond lengths. The 
worse situation is for the dihydrogen mole- 
cule, where an optimization leads to a 
collapse of the two atoms. This results 
because the one-electron energy is 
proportional to overlap which is maximized 
when the two atoms are superposed. The 
dialkali metals, with one valence electron 
coming from each atom, are similar. To 
overcome this inherent weakness in the ex- 
tended Htickel method, a core-core repul- 
sive potential is often added to the calcula- 
tion (9). The repulsive formula exp(a-br) 
can be computed by fitting the parameters a 
and b to EH results involving the filled (n- 
1) shell instead of the valence shell. The 
repulsive energy between two alkali ions 
has elsewhere been shown to be propor- 
tional to overlap, and can be fitted with an 
exponential expression (13). Long range 
Z/r terms do not represent the steepness of 
the repulsion found from more sophisti- 
cated calculations. Part of these terms are 
implicitly incorporated through the choice 

of the parameters (the diffuseness of the 
Slater orbital includes an effective field 
which results in a compromise between at- 
traction and repulsion). Another part would 
be screened by the core electrons. 

In our calculations, distances were ob- 
tained for the bulk crystals without intro- 
ducing repulsive corrections. This was not 
observed for diatomic molecules. A quick 
calculation suffices to show that the inner 
shell repulsion drops quickly with distance 
and becomes insignificant in determining 
the structure and total energy at distances 
larger than 2 A (see Fig. 3). For the sodium 
atom, the 2s and 2p orbital exponents can 
be estimated from the Slater rules. We have 
employed values similar to those found in 
the literature (I ). Figure 3 is a calculation of 
the fully occupied inner shell 2s and 2p or- 
bitals of a disodium molecule. In bulk so- 
dium, the interatomic distance is 3.66 A, 
hence, the minimum is not likely to result 
from neutral core-core repulsion alone. 

So where does the observed distance 
come from? In Fig. 3b we present the 3p- 
31, and 3s-3p overlap between two sodium 
atoms as they approach one another in a 
diatomic molecule or a bulk crystal. The 
Slater type orbital coefficients are listed in 
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FIG. 3. (a) Core-core repulsion for Na. (b) The p-p and s-p overlap. 

Table I. The 3p-3p overlap shows a maxi- 
mum at ca. 4.1 A. The reason for maximum 
overlap at large interatomic distance can be 
readily visualized in Fig. 4. It can be seen 
that the node in the 3p wavefunctions at the 
nuclei prevent the atoms from approaching 
beyond a well-defined value. The 3s-3p 
overlap term exhibits a maximum at 2.8 A 
which is shorter than that of the 3p-3p 
term, but it also does not lead to a collapse. 

Cl 

FIG. 4. Schematic diagram of p orbital overlap 
showing: (a) approaching atoms, (b) bonding (in- 
phase) overlap, and (c) antibonding (out-of-phase) 
overlap. 

In the abscence of core-core repulsion, 
simple maximization of the 3s-3s overlap 
would lead the diatomic species to collapse. 
This is the result obtained by EHT on di- 
atomic molecules or small clusters. The 
atomic p population increases with the clus- 
ter size for the atoms with a large coordina- 
tion number. For instance, in a planar trian- 
gular Li6 cluster, the tetracoordinated 
atoms are 42.4% 2p-like and 57.6% 2s- 
like. In the bee crystal, the number of near- 
est neighbors is eight and the 2p population 
exceeds the 2s value. Therefore, it is not 
surprising that the p-p and p-s overlap is a 
large factor in determining the distance. As 
the p population increases, the bond length 
increases. For Liz, the experimental dis- 
tance is 2.67 A (see Note). For Lij and Li, 
aggregates (ZO), it reaches 3.05 and 3.14 A, 
respectively. 

We note that this rather simple analysis 
of interatomic spacing is not obvious from 
basic solid state band theory models. The 
description of sodium as a lattice of positive 
cores surrounded by a sea of electrons 
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completely hides the antisymmetric, noda 
character of the p orbitals. 

3. The Energies of the s and p Levels 

3.1. The importance of the p orbitals is 
also seen in the sensitivity of the band 
shape to the p parameters. At the center 
and edges of the Brillouin zone where the s 
and p orbitals do not mix (the lowest va- 
lence band is pure s at I and pure p at iV), 
the orbital energies E are related to the 
overlap of the tight binding Bloch sums, S 
and to the atomic levels, H, by Eq. (1) 
which can be derived from the Wolfsberg- 
Helmholtz equation. 

E = H * (1.75 - 0.75/S). (1) 

Such an expression remains valid when 
the weighted formula is used. The varia- 
tions of E (the derivative) are thus inversely 
proportional to the square of the overlap. 
At I all the atoms are contributing in-phase 
and the overlap is extremely large, 9.48 (re- 
member that this is the overlap between 
one s orbital with all others in the crystal). 
Therefore, the energy of the bottom of the 
band near I (- 14.2 eV) is rather insensitive 
to small changes in the s--s overlap. On the 
other hand, at the N zone edge, the p-p 
overlap is smaller, 2.8, partly because the p 
orbitals have nodes and directionality. It 
decreases as one moves away from N 
where the predominant in-phase p charac- 
ter is lost. The energy of the band near N 
(which is close to the Fermi level at -9.6 
eV), is very sensitive to p-p overlap. As 
one moves across k-space, the response of 
the band energies to changes in p orbital 
parameterization is therefore more sensi- 
tive than their response to the s orbitals. 

3.2. The H,,-H,, gap. Input for extended 
Htickel calculations are the atomic levels, 
Hii, and the Slater exponents. Considering 
HPP as a parameter, how should we choose 
its energy? In our first set of parameters 
(Table I), it is 1 eV above the s level. The 
energy difference between the atomic 

ground state 2S and the first excited state 2P 
of the sodium atom (2) leads one to esti- 
mate the energy difference between the lev- 
els as 2.25 eV. We used this as a second set 
of parameters (set 2 in Table I) and it led to 
a reasonable (but short) Na-Na distance 
(3.64 A) and to a large p orbital population 
(0.444). 

The more sophisticated models of elec- 
tronic structure always show free-electron- 
like parabolic patterns at the bottom of the 
valence band (3). We found that in order to 
get a parabolic shape in EH-TB calcula- 
tions, we must use an initial state p orbital 
energy, Hii, which is only slightly above the 
s orbital energy, as in parameter set 1. The 
second set does not give the correct band 
structure whereas the first one does (see 
Fig. 5). Indeed, taking the free electron 
(FE) theory as a useful starting point, the 
occupied band must be parabolic in shape, 
hence our choice of the first set. 

At I, as noted above, the energy bands 
are composed of pure s, p, and d orbitals. 
As one departs from I, the p orbitals begin 
to mix with s orbitals. This mixing in- 
creases as we approach the band edge, 
where the p orbitals become in-phase and 
pass below the s orbitals. The p orbital mix- 
ing imposes a widening of the FE-like pa- 
rabola, lowering the energy at the edge of 
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FIG. 5. Electronic baud structure of Na showing (a) 
correct, and (b) “counterintuitive” behavior. 
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the Brillouin zone. If the s-p mixing is ex- 
cessive at values close to I, it lowers the 
band leading to the unsatisfactory result 
that I is a local maxima instead of a local 
minima (Fig. 5, curve b). 

3.3. Why does decreasing the s-p energy 
separation decrease the s-p mixing? Ac- 
cording to perturbation theory, it seems 
necessary to increase the energy gap be- 
tween the 3s and 3p atomic levels. If we do 
this, the result is just the opposite as de- 
sired-the mixing is increased. Con- 
versely, if we reduce the energy gap, the 
mixing appears to be reduced (Fig. 5, curve 
a). Thus, we arrive at the situation that ex- 
cessive 3s-3p mixing is reduced when we 
close the energy gap between them (as 
noted above). 

From perturbation theory, the orbital 
mixing is expressed by (HueESu)I(Ei-Ej) 
(12). In general, the Hv term is negative and 
much larger than the -ESq term. Hence, the 
numerator is constant and the perturbation 
decreases when the p level is raised be- 
cause the denominator is increased. In the 
present case, however, the numerator is 
dominated by the -ES, term (positive). 
This is known as the counterintuitive effect 
(4, II). Indeed, near I, the E value is quite 
large because of the many bonding interac- 
tions with all of the nearest neighbor atoms 
in the crystal. Also, the valence orbitals for 
alkali and alkaline earth metals are very dif- 
fuse, leading to large Sij terms. If the 3p 
level is lowered, the Hij term is increased 
and the numerator (Hij-Es;j) from the per- 
turbation formula is reduced according to 
the Wolfsberg-Helmholz formula: Hi, = 
k X Sij (Hij + Hjj)/2. 

Our use of the weighted Hij formula (Ref. 
(4)) instead of the Wolfsberg-Helmholtz 
formula minimized the “counterintuitive 
effect” (4, II). In addition, lowering the 
atomic p level energy in a systematic way 
(across the periodic table) enabled an even 
better correspondence with known band 
structures (3, 8). Forcing the H,,-H,, gap 

to equal the experimental gas phase atomic 
energy gap is not an appropriate approxi- 
mation for the metal. Indeed, on forming a 
metal from a free atom, the s electrons are 
pushed away from the nucleus, decreasing 
the screening of the nucleus for the other 
electrons. This contributes to reduce the 
HPP- H,, gap. Semiempirical LCAO param- 
eters calculated to reproduce the band dis- 
persion are known to inverse the atomic or- 
der; for example, the 4s level of nickel is 
found 0.76 eV below the 3d level (5). Re- 
normalized atoms lead to the same conclu- 
sion for the titanium atom (Fig. 3 in (6)). 
Although this form of parameterization ren- 
ders exact quantification of distances im- 
possible, it does not distract from the basic 
argument of the importance of p orbitals in 
crystal structure determination. 

Conclusion 
Our calculations and discussion empha- 

size that alkali metal clusters and crystals 
have large interatomic distances because of 
the dominance of p-p and s-p overlap. The 
core-core and partially screened ionic re- 
pulsions seem to be more important for the 
smaller alkali metals and for diatomic mole- 
cules where the p character is less signifi- 
cant. The incorporation of “vacant periph- 
eral states” with the occupied band has 
been recently proposed by Harrison and 
Louie (7) in other, more rigorous, solid 
state band structure calculations. Their ad- 
dition “very considerably improved the ac- 
curacy of the conduction bands.” This is 
analogous to the role of the p orbitals in our 
model of alkali crystals. In Table I are pre- 
sented EH-TB parameters for lithium, so- 
dium, potassium, and rubidium atoms with 
the calculated metal-metal bond distances. 
Preliminary results (8) also show that the 
EH-TB method using the valence orbit- 
als of the second row of transition metals 
(from rubidium to cadmium) can give band 
dispersions similar to those of Ref. (3) and 
reasonably accurate bond lengths. 
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Note added in proof. The Liz experimental dis- 
tance, 2.67 A, is small with respect to the bulk experi- 
mental value, 3.02 A, as well as to the values com- 
puted (10) for large clusters (3.05-3.26 A). However, 
it is still larger than the value where the inner 1s shell 
repulsion is significant. For the diatomic molecule, one 
electron calculations such as EHT are clearly unsatis- 
factory. It is even worse with parameters obtained for 
the bulk crystal. ST03G calculations lead to a small 
Mullikenp orbital population (0.073) and to a small 2s- 
2p overlap population of 0.05, compred with the 2s-2s 
value of 0.29. Large basis sets and CI would increase 
the p population but the partition into one electron 
terms from such calculations is not obvious. Assuming 
the same set of parameters for the bulk calculation, a 
repulsive A/r formula with A = 7.129 6; . eV would 
correct the standard EHT Liz calculation and provide 
the 2.67-A distance. It would correspond to the repul- 
sion of two central charges of 0.703e. For Li, at this 
short distance the nuclear charge is not screened and 
not incorporated into the Hti terms, and a repulsive 
formula has to be introduced. 
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